Exchange Student Mentor (Fall 2023 - Spring 2024) Advised an undergraduate exchange student and undergraduate researcher.
Kinematics, Dynamics, and Controls (Spring 2023) Teaching assistant in CMU course 16-711.
Advanced Robot Dynamics and Simulation (Fall 2022) Teaching assistant in CMU course 16-715.
Engineering Materials for Soft Robotics (Octoboer 2022) Instructor for a hands-on middle school workshop on enginerring materials with an emphasis on soft robotic applications.
Robotics Institute Summer Scholars (RISS) Mentor (Summer 2019, 2020) Advised three students in 2019 and one in 2020.
AI4ALL Instructor (Summer 2018) Lectured on search algorithms and neural networks for high school students from under-represented groups.
3rd and 4th Grade Math Teacher (2013-2014) Peace Corps education volunteer in Toussiana, Burkina Faso.
High School Computer Science Tutor (2010-2011)
Journal Articles
Zadan, M., Wertz, A., Shah, D., Patel, D. K., Zu, W., Han, Y., Gelorme, J., Mea, H. J., Yao, L., Malakooti, M. H., Ko, S. H., Kazem, N., & Majidi, C. (2024). Stretchable Thermoelectric Generators for Self-Powered Wearable Health Monitoring. Advanced Functional Materials. https://doi.org/https://doi.org/10.1002/adfm.202404861
Sabelhaus, A. P., Patterson, Z. J., Wertz, A. T., & Majidi, C. (2024). Safe Supervisory Control of Soft Robot Actuators. Soft Robotics. https://doi.org/https://doi.org/10.1089/soro.2022.0131
Zadan, M., Patel, D. K., Sabelhaus, A. P., Liao, J., Wertz, A., Yao, L., & Majidi, C. (2022). Liquid Crystal Elastomer with Integrated Soft Thermoelectrics for Shape Memory Actuation and Energy Harvesting. Advanced Materials, 2200857. https://doi.org/10.1002/adma.202200857
Sabelhaus, A. P., Mehta, R. K., Wertz, A. T., & Majidi, C. (2022). In-Situ Sensing and Dynamics Predictions for Electrothermally-Actuated Soft Robot Limbs. Frontiers in Robotics and AI, 9, 888261. https://doi.org/10.3389/frobt.2022.888261
Laird, P., Wertz, A., Welter, G., Maslove, D., Hamilton, A., Yoon, J. H., Lake, D. E., Zimmet, A. E., Bobko, R., Moorman, J. R., & others. (2021). The critical care data exchange format: a proposed flexible data standard for combining clinical and high-frequency physiologic data in critical care. Physiological Measurement. https://doi.org/10.1088/1361-6579/abfc9b
Pinsky, M. R., Wertz, A., Clermont, G., & Dubrawski, A. (2020). Parsimony of hemodynamic monitoring data sufficient for the detection of hemorrhage. Anesthesia & Analgesia, 130(5), 1176–1187. https://doi.org/10.1213/ANE.0000000000004564
Wertz, A., Holder, A. L., Guillame-Bert, M., Clermont, G., Dubrawski, A., & Pinsky, M. R. (2019). Increasing Cardiovascular Data Sampling Frequency and Referencing It to Baseline Improve Hemorrhage Detection. Critical Care Explorations, 1(10). https://doi.org/10.1097/CCE.0000000000000058
Hravnak, M., Pellathy, T., Chen, L., Dubrawski, A., Wertz, A., Clermont, G., & Pinsky, M. R. (2018). A call to alarms: Current state and future directions in the battle against alarm fatigue. Journal of Electrocardiology, 51(6), S44–S48. https://doi.org/10.1016/j.jelectrocard.2018.07.024
Conference Articles
Wertz, A., Sabelhaus, A. P., & Majidi, C. (2022). Trajectory Optimization for Thermally-Actuated Soft Planar Robot Limbs. 2022 IEEE 5th International Conference on Soft Robotics (RoboSoft), 439–446. https://doi.org/10.1109/RoboSoft54090.2022.9762226
Potosnak, W., Dufendach, K. A., Wertz, A., Miller, K., Dubrawski, A., & Kilic, A. (2021). Continuous Intraoperative Data Analysis Using Machine Learning Reveals Multiple Parameters to Predict Post-CABG Renal Failure. The Society of Thoracic Surgeons Annual Meeting. https://par.nsf.gov/biblio/10339368
Jeanselme, V., Wertz, A., Clermont, G., Pinsky, M. R., & Dubrawski, A. (2020). Robustness of Machine Learning Models for Hemorrhage Detection. What’s New in Non-Pulmonary Critical Care?, A6320–A6320. https://doi.org/10.1164/ajrccm-conference.2020.201.1_MeetingAbstracts.A6320
Jeanselme, V., Wertz, A., Clermont, G., Pinsky, M. R., & Dubrawski, A. (2020). Cross-correlation Features of Vital Signs Enable Robust Detection of Hemorrhage.
Wertz, A., Clermont, G., Dubrawski, A., & Pinsky, M. (2019). Hemodynamic monitoring parsimony: minimal information for rapid hemorrhage detection. ESICM LIVES 2019, 7, 91–92. https://doi.org/10.1186/s40635-019-0265-y
Chen, L., Dubrawski, A., Clermont, G., Pellathy, T., Wertz, A., Yoon, J. H., Pinsky, M., & Hravnak, M. (2019). Binarized Severity Level Of Future Instability Risk In Continuously Monitored Patients. Critical Care Medicine, 47(1), 605. https://doi.org/10.1097/01.ccm.0000552001.54183.00
Chen, L., Dubrawski, A., Clermont, G., Pellathy, T., Wertz, A., Pinsky, M. R., & Hravnak, M. (2018). Model based estimation of instability severity level in continuously monitored patients. ESICM LIVES 2018, 6, 59–60. https://doi.org/10.1186/s40635-018-0201-6
Wertz, A., Hravnak, M., Dubrawski, A., Chen, L., Pellathy, T., Clermont, G., & Pinsky, M. (2018). Sufficient Sampling Frequency For Machine Learning To Separate Monitoring Artifact From Instability. Critical Care Medicine, 46(1), 19. https://doi.org/10.1097/01.ccm.0000528093.59059.9e
Genome Announcements
Pope, W. H., Berryman, E. N., Forrest, K. M., McHale, L., Wertz, A. T., Zhuang, Z., Kasturiarachi, N. S., Pressimone, C. A., Schiebel, J. G., Furbee, E. C., Grubb, S. R., Warner, M. H., Montgomery, M. T., Garlena, R. A., Russell, D. A., Jacobs-Sera, D., & Hatfull, G. F. (2016). Genome Sequence of Gordonia Phage BetterKatz. In Microbiology Resource Announcements (Vol. 4, Number 4). American Society for Microbiology Journals. https://doi.org/10.1128/genomeA.00590-16
Robotics Institute Summer Scholars
Potosnak, W., Wertz, A., Miller, J. K., Kilic, A., Dufendach, K. A., & Dubrawski, A. (2020). Cardiothoracic Surgery Analysis for Predicting Acute Renal Failure Outcomes. In CMU Robotics Institute Summer Scholars. https://riss.ri.cmu.edu/research_showcase/working-papers-journals/
Edwards, C., Wertz, A., & Dubrawski, A. (2019). Using Similarity Measures to Detect Organizations in Online Escort Advertisements. In CMU Robotics Institute Summer Scholars. https://riss.ri.cmu.edu/research_showcase/working-papers-journals/
Gao, C., Falck, F., Goswami, M., Wertz, A., Pinsky, M. R., & Dubrawski, A. (2019). Detecting Patterns of Physiological Response to Hemodynamic Stress via Unsupervised Deep Learning. In arXiv preprint arXiv:1911.05121. https://arxiv.org/abs/1911.05121