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Abstract— Monitoring of physiological responses during a

blood loss event is crucial in determining appropriate treatment

for the well-being of the patient. Physician intuition implies

that the body has a number of different physiological response

patterns to blood loss, which change as time passes and as

blood loss worsens. Although previous research has shown

that a random forest classifier is able to determine whether

a patient is bleeding based on data alone, it is unclear whether

a model is able to detect these accompanying response patterns

from raw physiological data. To approach this problem, we use

unsupervised machine learning techniques, such as K-means

and Agglomerative clustering, as they are designed to extract

patterns from data without a ground truth. However, since

the data gathered from the patient are high-dimensional and

in time series form, it is impractical to handle without further

preprocessing. To make this tractable, we employ a deep dilated

convolutional encoder with combined with a custom triplet loss

function to project the data into a lower dimensional space.

By clustering these latent vectors with time constraints and

visualizing the clusters over time, we hypothesize that the

clusters will correspond to the physiological response patterns

that match physician intuition.

I. INTRODUCTION

Internal bleeding is a common symptom from physical
traumas, but it is difficult to analyze due to its complexity.
The raw data produced by the monitoring equipment
is often of multivariate time series form, which is high
dimensional and difficult to visually analyze. Machine
learning is a natural way of analyzing this high-dimensional
data. However, as a whole, the internal bleeding process has
not yet been extensively analyzed by the field of machine
learning.

This is not to say that no work has been done–for
example, Li et al. showed that prediction of whether a
crash will happen during blood loss is possible [1]. Falck
et al. found that for hemmorhage prediction, a GRU-based
model achieves best performance in small false-positive
range, while being inferior for negatives compared to a
formidable baseline using manually extracted features and a
random forest classifier [2]. Lei et al proposed a method of
performing supervised classification canonical correlation
clusters on time windows of CVP on a pig bleed dataset
and was shown to perform well in prediction of bleeding
vs non bleeding [3] (the appendix also has a list of medical
terms and abbreviations for the reader’s convenience). The
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work previously done on this data has focused on clear-cut,
supervised or semi-supervised approaches in validating their
hypothesis.

Previous work uses supervised learning to predict clearly
delineated outcomes, like the mortality of a person in a
given time window. However, there has been a lack of work
focusing on less obvious changes in physiological data
associated with blood loss. Supervised learning techniques
are not applicable to discover these pattern due to the lack
of ground truth in analyzing physiological state changes.
Only a few studies use unsupervised learning to examine
unlabeled data and discover important patterns. Utilizing an
unstructured approach may allow us to more extensively
understand different physiological effects of blood loss.

Furthermore, Lei et al’s work demonstrated that interesting
patterns could be found from the clusters - one cluster
corresponded mostly to the prebleed phase, a second
cluster would take over after bleeding started, and a third
cluster would appear even further throughout the bleed. The
interpretation was that the physiological responses reflected
in the CVP data of the pigs were changing throughout the
bleed and that these changes were different physiological
responses. Their interpretation was that initially there is
an initial compensation reaction to blood loss, and this
quickly shifts into a secondary overall systemic reaction.
Additionally, they found that most pigs that they analyzed
all similarly exhibited such behavior.

This previous work serves as inspiration to our work,
as it leads to many additional question concerning the
nature of the physiological reactions. For example, are all
physiological compensation events universal for each pig?
How many such physiological responses are there? Can we
build a model to learn and detect these responses?

Despite the widespread adoption of neural networks
in data processing, continuous, multivariate time series data
have not been affected insofar as, for example, the computer
vision or natural language processing communities. The
breadth of work in these fields has not translated to this
multivariate time series data, even though these fields
have valuable models that could be applied. Although
deep unsupervised sequence processing techniques have
generally focused on natural language processing, many of
these model architectures can be generalized to continuous,
multi-variable time series data with some additional effort.
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Fig. 1: Overview of the methodology

In this paper, we demonstrate a modern deep unsupervised
encoder model in the application of finding embeddings
from continuous data of 6 health metrics. With these
embeddings, we can then use several different clustering
techniques to obtain a number of clusters which may
correspond to physician intuition. Additionally, this would
expand on Lei et al’s findings of physiological response
patterns associated with blood loss.

A. Contributions

To summarize, the main contributions of this paper are
1) An investigation as to whether pigs in general have

a universal physiological response pattern to internal
bleeding.

2) An investigation as to the number of such physiological
responses detected from the model.

II. METHODOLOGY

An overview is shown in 1.

A. Data

The data consists of health metrics of 93 pigs in total.
These pigs are separated into 4 groups, which are then bleed
at different rates - 60mL/min, 20mL/min, 5mL/min, and
0mL/min respectively. Each pig was monitored for 11 vital
signs at 250 Hz (synchronized): arterial and venous blood
pressures (CVP, arterial pressure fluid filled and millar,
pulmonary pressure), arterial and venous oxygen saturations
(SpO2, SvO2), EKG, Plethysmograph, CCO, stroke volume
variation (Vigeleo), and airway pressure. The data collection
methodology is similar to [4].

For our task, we choose to only use the 16 pigs assigned to
the most gradual bleeding task - 5mL/min - as this should
give us clearest indications of physiological responses as
the pigs’ status slowly worsens. Also, we choose to only
use 6 of these features - EKG, arterial pressure fluid filled,
pulmonary pressure, CVP, plethysmograph, and airway
pressure - as they contain potential important semantic
information about the physiological status. Additionally,
we also have physician annotated timestamps and notes
of when a blood draw is performed. This is important as
performing a blood draw corresponds with extremely high

variation noise in some variables in the time series for a
few seconds. Each health metric is measured in 250 hertz.

Since we have 16 pigs and we want to simply analyze all of
them, we train our encoder all 16 pigs. This ensures that we
are training over all of the data and learning as much from
the data as possible. For our training data, we pass in the
entire bleed sequence of each pig to the model. To obtain
embeddings of the bleed sequences, We choose a window
of 600 timesteps and split from the time sequences (without
overlap) time windows of 600 timesteps by 6 features. This
allows us to get an embedding of the pig state for every 2.4
second window. We chose 600 as it was long enough to get
1 to 2 breaths in and was easier to process computationally;
however, this is also a parameter that may be tuned in
further research.

B. Causal Dilated Convolutional Neural Network

A convolutional neural network (CNN) is a neural
network that trains well on even very high dimensional data,
such as images. First introduced in 2012 [5], CNNs have
long since been the cornerstone of modern computer vision
approaches. However, CNNs can also be applied to non
image data as well. For example, although recurrent neural
networks have historically been used in sequential data
modeling, CNNs are now a popular and viable approach in
dealing with sequential data. Wavenet is one of the most
famous example of this approach–audio waves produced
by the CNN were better than previous state-of-the-art
recurrent neural network approaches [6]. Wavenet used
dilated convolutions, which skips a timestep every layer of
the CNN - leading to an exponentially large effective view
of the sequence. It also used causal convolutions, or the
idea that the CNN can only process what it has seen before
in the time sequence. In our application, causal convolutions
are still important because it allows the model to be run
on arbitrary length sequences and also be able to run on
sequences online during test time. Should we extend our
approach to online detection of bleeding responses phases,
our model wouldn’t break.

For our deep unsupervised embedding model we use
an convolutional encoder as proposed by Franceschi et

57



al. [7]. Compared to an autoencoder, training solely an
encoder model is beneficial in that it severely reduces the
training time necessary for the model to achieve good
performance; additionally, in many cases, training a decoder
model is unnecessary to obtain meaningful embeddings, as
shown by Franceschi et al. This model is able to produce
meaningful embeddings that perform close to state of the
art if not better compared to even supervised time series
embedding methods [7]. Using CNNs to process sequences
have also another inherent advantage: the speed. Since CNN
operations are highly parallelizable, training this encoder
is faster than training a traditional sequence to sequence
recurrent neural network [7]. We choose to use this model
as opposed to traditional statistical feature extraction as
we want to assume as little as possible about the data and
see if the network can discover patterns by itself. Further
information about the nature of this convolutional structure
is shown in Figure 2.

While only 3 dilated causal CNN layers shown here,
in the actual model, the number of these modules is a
hyperparameter that we can specify. The dilated part is
visualized by the doubling of the gaps between the boxes
that is analyzed by the CNN as you go further up in the
output layers. The causal part is shown by the fact that the
final output box on the upper right only has access to the
information of the boxes before it–a regular CNN would
appear more symmetric in that it have access to information
after its current timestep as well. The adaptive pooling
layer comes after the dilated causal CNN layers and simply
reduces an arbitrary dimensional input to a fixed-sized
output. Finally, the final layer is a fully connected layer that
outputs the embedding.

C. Triplet Loss

We will use triplet loss to train our encoder as specified
by [7] et al. Triplet loss is a loss function with a very
natural intuition as its basis - similar things should be close
together and unsimilar things should be further apart. This
is reflected in its mathematical formulation. Let f be our
encoder that obtains latent vectors from the time series data.
Let x, xpos, xneg

k be the reference time series, a positive time
series example, and a negative time series example. Let K
be the number of negative samples to take. Then, the loss is
shown in equation 1.

L = �log(�(f(x)T f(xpos)))�
KX

k=1

log(�(�f(x)T f(xneg
k )))

(1)
Triplet loss is popular in natural language processing -
Word2vec [8] as it is effective in training unsupervised
models that obtain latent vectors from words that encode
some semantic meaning. Franceschi et al. demonstrated that
this is useful for unsupervised learning of useful embeddings
of general multivariate time sequences as well [7].

Fig. 2: Graphical representation of dilated and causal con-
volutions. The output of each row is the row above it.
The bottom-most row of boxes denotes a variable length
input, and the top-most row of boxes an out of latent vector
embeddings.

D. Sampling methodology

We use a modified version of Franceschi et al.’s sampling
algorithm to obtain choices of reference x, positive example
xpos, and negative example xneg

k . This is different from
the original implementation from Franceschi et al. since the
negative samples are only choosen randomly when there
can be no overlap with the reference time series; thus,
this guarantees that a negative example can’t be a positive
example as well. This should allow the model to learn better
as there is a clearer difference between positive and negative
samples. Algorithm 1 shows the methodology. Figure 3
shows how our proposed sampling algorithm in practice.

E. Evaluation

Since we have no ground truth, validation of usefulness
of these embeddings is an open problem. However, we can
qualitatively evaluate them. We use a variety of different
clustering methods to try to find the one that produces
the best cluster of embeddings that makes sense to us
intuitively. We are looking for is separation of the clusters
by time - that is - different clusters should be separated
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Fig. 3: Sampling methodology. Let the each row of boxes
represent multivariate sequences of our training data, and let
the rows be the sequences in the batch where we choose
the references from. Then, the pink squares represent the
reference timesteps, positive timesteps are sampled form
within the reference timesteps. Negative timesteps are sample
from the white boxes (all of the timesteps excluding the
reference timesteps).

for i 2 [1, N ] do

randomly choose length of reference sample
lenref

i 2 [1, len(yi)]
randomly choose length of positive sample
lenpos

i 2 [1, lenref
i ]

randomly choose reference sample xref
i from

subseries of yi of length lenref
i

randomly choose positive sample xpos
i from subseries

of xref
i of length lenpos

i
end for

for k 2 [1,K ⇤N ] do

randomly choose yk from the batch
randomly choose lenneg

k 2 [1, size(yk)]
Let xref

yk
be the reference sample that we previously

took from yk
randomly choose xneg

k among subseries of yk of
length lenneg

k without overlapping xref
yk

end for

Algorithm 1: Input: A training batch of complete sequences
yi, where i is the ith training sequence. Let N be the total
number of sequences in this training batch. Let K be the
ratio of negative samples to be sampled per batch item.
Output: N reference samples xref , N samples of positive
samples xpos, and N*K negative samples xneg .

from each other by time, but the same cluster should not
be separated by time. Another thing that we are looking at
is order consistency of the clusters over time. For example,
since the pigs are only ever getting worse in our data, and
should never return to a previous ”healthy” state.

Specifically, we use a number of different time embeddings,
clustering techniques, and latent dimensions, and finally,
number of clusters. We explore:

1) Time embeddings added to latent embeddings. The
type of time embedding is taken from attention trans-
fomers, from Vaswani et al. [9].

a) No time information added
b) Adding time information for full length of the

sequence
c) Adding time information only from the start of

bleed (Since we know the exact location of the

start of bleed from the physician annotations,
we only add temporal information to the em-
beddings obtained after the pig starts bleeding.
The prebleed embeddings are left alone. This is
effectively adding information about the amount
of blood lost, since bleed speed is constant after
the pig starts bleeding).

2) Clustering methods (All of these are implemented in
sklearn [10])

a) K-means
b) Agglomerative clustering with ward linkage

(Bottom-up hierarchical clustering. Ward’s link-
age merges the two clusters such that the increase
in the value of the sum-of-squares variance is
minimized [11]. Specifically, sklearn references
[12].)

3) Latent embedding dimensions: 64, 128, 256
4) Number of clusters: In addition to all of these methods,

we also explore 11 different numbers of clusters that
we pass into the clustering algorithms (from 2 to 12
clusters).

III. RESULTS

A. Graphs of the clusters

Since there may be 3 clustering methods * 3 time embed-
ding methods * 3 latent embedding dimensions * 11 number
of clusters = 297 possible graphs in total, it is impractical
to show all of them in this paper. Thus, we only show a
few examples shown in Figure 4. However, all of the figures
and model code (along with hyperparameters) will be on
my github: github.com/andy1445. The Y axis of each of
the following figures represents each pig, and the X axis
represents minutes. The different colors represent different
clusters found by the clustering algorithm, and the colors
are random. To make these plots easier to see, we jittered
the Y axis.

IV. DISCUSSION

From these graphs, we can see that the clustering algo-
rithm is at able to discern a ”healthy” state and a ”non
healthy” state for all of the 3 cluster graphs. For the 11 cluster
graphs, for both kmeans and agglomerative clustering we are
able to discern between different pigs as well as different
cluster progressions throughout the bleed; however, all pigs
eventually end up in the same state - the green or purple
cluster for kmeans and the orange cluster for agglomerative
clustering. This make sense as the pigs all crash after this
last cluster. Additionally, we found that reactions between
pigs are not universal, as some pigs skip clusters entirely
through the bleed, and they can also start off in different
clusters compared to other pigs. We also see that pigs can
go through as many as 5 different states and as low as 2
states. Additionally, we are able to detect bleed draws. They
show up as noise that occurs regularly every few 30 minutes
or so in the plot of the latent clusters.
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Fig. 4: The plots of the clusters over time when the model is trained with the ability to differentiate between differences
between individual pigs. The colors of the clusters are not consistent between the plots. The X axis is in minutes, and the
Y axis are the pigids.

(a) 128 dimensional latent vectors, half time embedding, agglom-
erative clustering, 3 clusters

(b) 128 dimensional latent vectors, half time embedding, kmeans
clustering, 3 clusters

(c) 128 dimensional latent vectors, no time embedding, agglomer-
ative clustering, 3 clusters

(d) 128 dimensional latent vectors, no time embedding, kmeans
clustering, 3 clusters

(e) 128 dimensional latent vectors, half time embedding, agglom-
erative clustering, 11 clusters

(f) 128 dimensional latent vectors, half time embedding, kmeans
clustering, 11 clusters

(g) 128 dimensional latent vectors, no time embedding, agglomer-
ative clustering, 11 clusters

(h) 128 dimensional latent vectors, no time embedding, kmeans
clustering, 11 clusters
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V. FUTURE WORK

Future work should seek to use more rigorous evaluation
metrics. Once we have the labels, we can then train a
random forest classifier to predict the labels from the raw
embeddings alone. Additionally, we should also use our
embeddings to predict bleed or survival, like previous work
has done. Future work should also explore more variety of
models such as different encoder models such as Variational
Autoencoders. Additionally, Additionally, we can also find
clusters or separations in a multitude of different ways,
for example, we can use Hidden Markov Models (HMMs)
to detect changes as well as change point detection. We
should also aim to have physicians analyze the validity of
the different clusters that we find.
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APPENDIX

Abbreviation and Definitions
• Airway pressure: Pressure in the the airways, note that

this is under artificial ventilation to offset the energy
requirement for breathing, so that a cleaner reaction to
the blood loss may be obtained (measured in mmHg)
[2].

• Arterial pressure fluid filled: Systemic arterial blood
pressure in the aorta, measure in mmHg [2].

• Arterial pressure millar: Systemic arterial oxygenated
blood pressure in the peripheral (measured in mmHg)
[2].

• CCO: Continuous cardiac output is a measure of the
volume of blood pumped from the heart in a certain
amount of time. It is often used as a predictor of oxygen
delivery to the cells (measured in mL/s) [13]

• CVP: Central venous pressure is a measure of pressure
in the superior vena cava that can be used as an
estimation of right atrial pressure, often used as an as-
sessment of hemodynamics and hemmorage prediction,
particularly in intensive care units (measured in mmHg)
[14].

• EKG/ECG: Both are the exactly the same thing and
stand for electrocardiogram, which is a measure of the
flow of the cardiac electrical cycle (measured in mV)
[15].

• Plethysmograph: A waveform that represents changes
in blood volume. It has no units and is qualitative due
to the non-linear relationship between the absorption of
the light for each individual, but overall patterns can be
[16].

• Pulmonary pressure: Pulmonary artery pressure (PAP).
The pressure of blood pumped from heart into pul-
monary (lung) system (measured in mmHg) (i.e. de-
oxygenated) [2].

• SpO2: Arterial oxygen saturation (oxygenated) (mea-
sured in %) [2].

• SvO2: Venous oxygen saturation (deoxygenated), (mea-
sured in %) [2].

• Vigeleo: Variation of the stroke volume (SV) or the
volume of blood pumped out of the left ventricle
(oxygenated), defined as range over mean [2].

REFERENCES

[1] X. Li, M. R. Pinsky, G. Clermont, and A. Dubrawski, “Leveraging
routine pre-operative blood draws to predict hemorrhagic shock during
surgery,” in Proceedings of the Neural Information Processing Systems

Machine Learning for Health (ML4H) Workshop 2018, 2018.
[2] F. Falck, M. R. Pinsky, and A. Dubrawski, “Deep sequence modeling

for hemorrhage diagnosis,” in Proceedings of the Neural Information

Processing Systems Machine Learning for Health (ML4H) Workshop

2018, 2018.
[3] E. Lei, K. Miller, and A. Dubrawski, “Learning mixtures of multi-

output regression models by correlation clustering for multi-view
data,” arXiv preprint arXiv:1709.05602, 2017.

[4] M. R. Pinsky, “Instantaneous venous return curves in an intact canine
preparation,” Journal of Applied Physiology, vol. 56, no. 3, pp. 765–
771, 1984.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural

information processing systems, 2012, pp. 1097–1105.
[6] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,

A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu,
“Wavenet: A generative model for raw audio,” arXiv preprint

arXiv:1609.03499, 2016.
[7] J.-Y. Franceschi, A. Dieuleveut, and M. Jaggi, “Unsupervised scalable

representation learning for multivariate time series,” arXiv preprint

arXiv:1901.10738, 2019.
[8] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,

“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in
Advances in neural information processing systems, 2017, pp. 5998–
6008.

[10] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal

of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.
[11] T. W. Liao, “Clustering of time series dataa survey,” Pattern recogni-

tion, vol. 38, no. 11, pp. 1857–1874, 2005.
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