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Motivation
● Patient care can beneft from 

knowledge of patient state and 
disease progression.

● Monitoring systems can help…
● …but we need models to really 

describe them.
● Alone, models aren’t very 

intelligent, but we can evaluate 
our models to determine how 
to use them intelligently.

● How can we use high density 
data collected from patients in 
research and in practice?
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Computational Experimental Design
● Featurization: Pull out 

information that might be 
difcult for a model to 
discover automatically.

● Training and Validation: 
Build a good model.

● Evaluation: Understand the 
model’s performance.

● Operationalize: (Optional) 
Use the model in a clinical 
seting.

Training Set Testing Set

ROC AMOC
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Featurization
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Time Series Featurization
● Monitoring devices can produce 

high density time signals. How do 
we analyze them?

● We can use instantaneous values.
● We can look at integrals and 

derivatives.
● We can compute features in a 

sliding window (statistics, trend 
lines, test statistics, …).

● We can look at signal correlations, 
and apply all of the above 
techniques (e.g. rolling 
correlation).

● We can extract frequency 
components (Fourier transform, 
wavelet, spectral power, …).
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Structure of Variance in Data
● Principal Components Analysis 

(PCA)
– Which correlations explain the 

most variation in the data?
– Dimensionality reduction.
– Anomaly detection.

● Canonical Correlation Analysis 
(CCA)
– Which correlations between 

features of two datasets explain 
the most variation in the data?

● Canonical Autocorrelation Analysis 
(CAA)
– Which correlations between 

subsets of features in a single 
dataset explain the most 
variation in the data?
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Structure of Variance Across Datasets
● Principal Components Analysis 

(PCA)
– Which correlations explain the 

most variation in the data?
– Dimensionality reduction.
– Anomaly detection.

● Canonical Correlation Analysis 
(CCA)
– Which correlations between 

features of two datasets explain 
the most variation in the data?

● Canonical Autocorrelation Analysis 
(CAA)
– Which correlations between 

subsets of features in a single 
dataset explain the most 
variation in the data?
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Structure of Variance Across Features Subsets in a 
Single Dataset

● Principal Components Analysis 
(PCA)
– Which correlations explain the 

most variation in the data?
– Dimensionality reduction.
– Anomaly detection.

● Canonical Correlation Analysis 
(CCA)
– Which correlations between 

features of two datasets explain 
the most variation in the data?

● Canonical Autocorrelation Analysis 
(CAA)
– Which correlations between 

subsets of features in a single 
dataset explain the most 
variation in the data?
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Signifcant Variability may be Seen in Patient Vitals
● Patients can be very diferent when 

stable.

Stable before some
event.

Afer time t=0, something
interesting starts to happen
to the signals.
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Difcult to Set Good Detection Treshold
● Patients can be very diferent when 

stable.
● What threshold yields fast detection of 

event at t=0 and few false alarms for all 
patients?

Stable before some
event.

Afer time t=0, something
interesting starts to happen
to the signals.
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Personalized Normalization Reduces Variation
● Patients can be very diferent when 

stable.
● What threshold yields fast detection of 

event at t=0 and few false alarms for all 
patients?

● Assume some regularity in the baseline 
period:
– Center on the mean.
– Scale by its standard deviation.
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Detection Treshold can be Set Afer Normalization
● Patients can be very diferent when 

stable.
● What threshold yields fast detection of 

event at t=0 and few false alarms for all 
patients?

● Assume some regularity in the baseline 
period:
– Center on the mean.
– Scale by its standard deviation.
– Now we can fnd a threshold for this 

data the yields fast detections and 
few false positives.
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Personalized Normalization has Caveats
● Patients can be very diferent when 

stable.
● What threshold yields fast detection of 

event at t=0 and few false alarms for all 
patients?

● Assume some regularity in the baseline 
period:
– Center on the mean.
– Scale by its standard deviation.
– Now we can fnd a threshold for this 

data the yields fast detections and 
few false positives.

● For this to work we need to collect data 
when we know the patient is stable.
– Not available for every patient.
– But can be captured for patients prior 

to, for example, surgery.
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Model Training and Validation
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Algorithm Selection
● Which algorithm will depend 

on what type of task:
– Classifcation?
– Clustering?
– Regression?
– Anomaly detection?

● We’ll focus on building 
classifers.
– Training and validation is 

largely the same between 
types.

– Evaluation will change.
● In practice random forests 

generally perform very well.
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Random Forest is a Good Start
● Which algorithm will depend 

on what type of task:
– Classifcation?
– Clustering?
– Regression?
– Anomaly detection?

● We’ll focus on building 
classifers.
– Training and validation is 

largely the same between 
types.

– Evaluation will change.
● In practice random forests 

generally perform very well.
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Building the “Perfect” Model
● Training on all data may fool us into 

training a “perfect” model: simply return 
the class associated with each input.
– 100% accuracy! A+!
– Except…

● …applying model to new data ofen yields 
poor performance due to model overfting.

● Instead, train on one subset and test on 
another to estimate expected performance 
on new data. Tis forces us to train models 
that generalize.

● Do this multiple times to determine 
expected performance with confdence 
bounds (called cross validation).
– We can split by each patient in a “leave 

one patient out” cross validation.
● Tis lets us compare model algorithms and 

instances (specifc hyper-parameter choices).
– We can also use cross validation to 

choose hyper-parameters.

“Perfect” Model

A

B
B

A
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“Perfect” Models Overft the Data
● Training on all data may fool us into 
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Test Set Outputs

Test Set Inputs

Train and Test Models on Diferent Datasets
● Training on all data may fool us into 

training a “perfect” model: simply return 
the class associated with each input.
– 100% accuracy! A+!
– Except…

● …applying model to new data ofen yields 
poor performance due to model overfting.

● Instead, train on one subset and test on 
another to estimate expected performance 
on new data. Tis forces us to train models 
that generalize.

● Do this multiple times to determine 
expected performance with confdence 
bounds (called cross validation).
– We can split by each patient in a “leave 

one patient out” cross validation.
● Tis lets us compare model algorithms and 

instances (specifc hyper-parameter choices).
– We can also use cross validation to 

choose hyper-parameters.

Training Set Model
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Test Set Outputs

Test Set Inputs

Validate on Multiple Train and Test Splits
● Training on all data may fool us into 

training a “perfect” model: simply return 
the class associated with each input.
– 100% accuracy! A+!
– Except…

● …applying model to new data ofen yields 
poor performance due to model overfting.

● Instead, train on one subset and test on 
another to estimate expected performance 
on new data. Tis forces us to train models 
that generalize.

● Do this multiple times to determine 
expected performance with confdence 
bounds (called cross validation).
– We can split by each patient in a “leave 

one patient out” cross validation.
● Tis lets us compare model algorithms and 

instances (specifc hyper-parameter choices).
– We can also use cross validation to 

choose hyper-parameters.

Training Set Model

A

B
A

B

B

A A

B

A A
Test Set Outputs

Test Set Inputs

Training Set Model

A

B
A

A

B

A B

B

A A
Test Set Outputs

Test Set Inputs

Training Set Model

BA

A

B

B B

B

A

AA

B



26 April 2018 34 of 61Copyright © 2018 Auton Lab. All rights reserved.

Test Set Outputs

Test Set Inputs

Validate on Multiple Train and Test Splits
● Training on all data may fool us into 

training a “perfect” model: simply return 
the class associated with each input.
– 100% accuracy! A+!
– Except…

● …applying model to new data ofen yields 
poor performance due to model overfting.

● Instead, train on one subset and test on 
another to estimate expected performance 
on new data. Tis forces us to train models 
that generalize.

● Do this multiple times to determine 
expected performance with confdence 
bounds (called cross validation).
– We can split by each patient in a “leave 

one patient out” cross validation.
● Tis lets us compare model algorithms and 

instances (specifc hyper-parameter choices).
– We can also use cross validation to 

choose hyper-parameters.

Training Set Model

A

B
A

B

B

A A

B

A A
Test Set Outputs

Test Set Inputs

Training Set Model

A

B
A

A

B

A B

B

A A
Test Set Outputs

Test Set Inputs

Training Set Model

BA

A

B

B B

B

A

AA

B



26 April 2018 35 of 61Copyright © 2018 Auton Lab. All rights reserved.

Evaluating Performance with
Receiver Operating Characteristic (ROC) Curves
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Introducing the ROC (Receiver Operating Characteristic) Curve

An ROC curve characterizes the 
performance tradeofs made when 
tuning a classifer threshold.

We generally include at least a 
random choice model and one 
or more other models we want 
to compare.

Tis is the model we want to compare with random 
guessing.

Tis model (call it “Random”) chooses a class at random 
with uniform probability.
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Purpose an ROC Curve

An ROC curve characterizes the 
performance tradeofs made when 
tuning a classifer threshold.

We generally include at least a 
random choice model and one 
or more other models we want 
to compare.

Tis curve characterizes the 
tradeof between improving true 
positive rate (TPR) or false 
positive rate (FPR).

For a given FPR we can lookup the 
expected TPR.

TPR: What fraction of the positive cases did we correctly identify?

FPR: How ofen are we incorrectly 
alerting of a condition that is not 
really present?

(Or: How much do the nurses hate the new 
monitor?)
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Evaluating an ROC Curve

An ROC curve characterizes the 
performance tradeofs made when 
tuning a classifer threshold.

We generally include at least a 
random choice model and one 
or more other models we want 
to compare.

Tis curve characterizes the 
tradeof between improving true 
positive rate (TPR) or false 
positive rate (FPR).

For a given FPR we can lookup the 
expected TPR.

A beter performing classifer 
will tend to move the curve 
toward the top lef corner (i.e. 
more positive detections made 
with fewer false detections).

Best to be up here
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Low False Positive Rates on an ROC Curve

We are ofen most interested in 
the low FPR range in 
operation…

We want to look at this region.
Low FPR = Fewer false alarms.
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Low False Positive Rates on an ROC Curve

We are ofen most interested in 
the low FPR range in 
operation…

…so we plot FPR on the log 
scale to zoom in to the smaller 
values.

Now it’s much clearer.
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Low False Negative Rates on an ROC Curve

Tis side is interesting too…

Te other end of the ROC is also 
interesting, so we want to zoom 
there too…
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Low False Negative Rates on an ROC Curve
Te other end of the ROC is also 
interesting, so we want to zoom 
there too…

…so we can invert the rates and 
swap the axes…

We fipped and 
rotated the ROC… 

Why?
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Low False Negative Rates on an ROC Curve
Te other end of the ROC is also 
interesting, so we want to zoom 
there too…

…so we can invert the rates and 
swap the axes…

TNR: How much time do we spend on patients who need it 
by avoiding too much focus on those who don’t?
FNR: How ofen do we miss something potentially really 
bad?

Note that:
● 1-FPR=TNR
● 1-TPR=FNR
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Low False Negative Rates on an ROC Curve
…then plot the false negative 
rate (FNR) on the log scale.
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ROC Curve
…then plot the false negative 
rate (FNR) on the log scale.

Now we see both 
interesting regions 

clearly!
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Case Study: Higher Granularity in Data Improves 
Detection of Hemorrhage in Pig Models

ROC curves for two diferent hemorrhage detection models

Beter
Higher density

Lower density

Clear how much beter here! How much beter at FPR of 10-3?

?

● A University of Pitsburgh and Carnegie Mellon University study* 
evaluated the importance of data granularity in detection of 
hemorrhage in pig models.

● Te ROC curves make it very clear how performance at low error 
rates compare between two of the models.

* (In progress) Wertz et al. Increasing sampling frequency and 
referencing to baseline improve hemorrhage detection. 2018.
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Case Study: Personal Baseline Normalization 
Improves Detection of Hemorrhage in Pig Models

ROC curves for the same model with and without normalized features

● A University of Pitsburgh and Carnegie Mellon University study* 
evaluated the importance of data granularity in detection of 
hemorrhage in pig models.

● Te ROC curves make it very clear how performance at low error 
rates compare between two of the models.

● Te study also looked at the impact of normalization on personalized 
baselines, showing marked improvement.

Beter

Normalized

Non-normalized

* (In progress) Wertz et al. Increasing sampling frequency and 
referencing to baseline improve hemorrhage detection. 2018.
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Evaluating Performance with
Activity Monitoring Operating Characteristic 

(AMOC) Curves
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Purpose of the AMOC (Activity Monitoring Operating 
Characteristic) Curve

● Given a time series of predictor outputs 
generated by our model…

● …we want to characterize the tradeof 
between detection latency (time to detection) 
and false alarms (FPR).

● How do we compute this?
– Call a “detection” an output greater or 

equal to 0.2. Assigning this threshold 
gives us

● A time to detection (the frst true 
positive).

● A number of false positives (thus, 
FPR).

– Do this again for another threshold, 0.3, 
and now there are two points on the 
AMOC.

– Keep doing this for all thresholds for the 
complete curve.

● Lower FPR values are generally more 
operationally useful… so we put FPR on the 
log scale to zoom in to this region.

Interesting event
starts here
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Purpose of the AMOC Curve
● Given a time series of predictor outputs 

generated by our model…
● …we want to characterize the tradeof 

between detection latency (time to detection) 
and false alarms (FPR).

● How do we compute this?
– Call a “detection” an output greater or 

equal to 0.2. Assigning this threshold 
gives us

● A time to detection (the frst true 
positive).

● A number of false positives (thus, 
FPR).

– Do this again for another threshold, 0.3, 
and now there are two points on the 
AMOC.

– Keep doing this for all thresholds for the 
complete curve.

● Lower FPR values are generally more 
operationally useful… so we put FPR on the 
log scale to zoom in to this region.

You can ignore this 
grayed region. We can’t 
detect the event before it 

occurs.
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Computing an AMOC Curve
● Given a time series of predictor outputs 

generated by our model…
● …we want to characterize the tradeof 

between detection latency (time to detection) 
and false alarms (FPR).

● How do we compute this?
– Call a “detection” an output greater or 

equal to 0.2. Assigning this threshold 
gives us

● A time to detection (the frst true 
positive).

● A number of false positives (thus, 
FPR).

– Do this again for another threshold, 0.3, 
and now there are two points on the 
AMOC.

– Keep doing this for all thresholds for the 
complete curve.

● Lower FPR values are generally more 
operationally useful… so we put FPR on the 
log scale to zoom in to this region.
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log scale to zoom in to this region.



26 April 2018 53 of 61Copyright © 2018 Auton Lab. All rights reserved.

Computing an AMOC Curve
● Given a time series of predictor outputs 

generated by our model…
● …we want to characterize the tradeof 

between detection latency (time to detection) 
and false alarms (FPR).

● How do we compute this?
– Call a “detection” an output greater or 

equal to 0.2. Assigning this threshold 
gives us

● A time to detection (the frst true 
positive).

● A number of false positives (thus, 
FPR).

– Do this again for another threshold, 0.3, 
and now there are two points on the 
AMOC.

– Keep doing this for all thresholds for the 
complete curve.

● Lower FPR values are generally more 
operationally useful… so we put FPR on the 
log scale to zoom in to this region.



26 April 2018 54 of 61Copyright © 2018 Auton Lab. All rights reserved.

Computing an AMOC Curve
● Given a time series of predictor outputs 

generated by our model…
● …we want to characterize the tradeof 

between detection latency (time to detection) 
and false alarms (FPR).

● How do we compute this?
– Call a “detection” an output greater or 

equal to 0.2. Assigning this threshold 
gives us

● A time to detection (the frst true 
positive).

● A number of false positives (thus, 
FPR).

– Do this again for another threshold, 0.3, 
and now there are two points on the 
AMOC.

– Keep doing this for all thresholds for the 
complete curve.

● Lower FPR values are generally more 
operationally useful… so we put FPR on the 
log scale to zoom in to this region.



26 April 2018 55 of 61Copyright © 2018 Auton Lab. All rights reserved.

Computing an AMOC Curve
● Given a time series of predictor outputs 

generated by our model…
● …we want to characterize the tradeof 

between detection latency (time to detection) 
and false alarms (FPR).

● How do we compute this?
– Call a “detection” an output greater or 

equal to 0.2. Assigning this threshold 
gives us

● A time to detection (the frst true 
positive).

● A number of false positives (thus, 
FPR).

– Do this again for another threshold, 0.3, 
and now there are two points on the 
AMOC.

– Keep doing this for all thresholds for the 
complete curve.

● Lower FPR values are generally more 
operationally useful… so we put FPR on the 
log scale to zoom in to this region.

Fewer false alarms

More latency
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Computing an AMOC Curve
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log scale to zoom in to this region.
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Low False Positive Rates on an AMOC Curve
● Given a time series of predictor outputs 

generated by our model…
● …we want to characterize the tradeof 

between detection latency (time to detection) 
and false alarms (FPR).

● How do we compute this?
– Call a “detection” an output greater or 

equal to 0.2. Assigning this threshold 
gives us

● A time to detection (the frst true 
positive).

● A number of false positives (thus, 
FPR).

– Do this again for another threshold, 0.3, 
and now there are two points on the 
AMOC.

– Keep doing this for all thresholds for the 
complete curve.

● Lower FPR values are generally more 
operationally useful… so we put FPR on the 
log scale to zoom in to this region.
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FPR).

– Do this again for another threshold, 0.3, 
and now there are two points on the 
AMOC.

– Keep doing this for all thresholds for the 
complete curve.

● Lower FPR values are generally more 
operationally useful… so we put FPR on the 
log scale to zoom in to this region.
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Case Study: Higher Granularity in Data Reduces 
Detection Latency

AMOC curves for two diferent hemorrhage detection models

≥ 80% ≥ 90% 100%

● A University of Pitsburgh and Carnegie Mellon University study* 
evaluated the importance of data granularity in detection of 
hemorrhage in pig models.

● Te AMOC curves make it very clear how detection latency at low 
error rates compare between two of the models.

Beter

Lower density

Higher Density

* (In progress) Wertz et al. Increasing sampling frequency and 
referencing to baseline improve hemorrhage detection. 2018.
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Case Study: Personal Baseline Normalization 
Reduces Detection Latency

AMOC curves for the same model with and without normalized features

Beter

Non-normalized

Normalized

≥ 80% ≥ 90% 100%

● A University of Pitsburgh and Carnegie Mellon University study* 
evaluated the importance of data granularity in detection of 
hemorrhage in pig models.

● Te AMOC curves make it very clear how detection latency at low 
error rates compare between two of the models.

● Te study also looked at the impact of normalization on personalized 
baselines, showing marked improvement.

* (In progress) Wertz et al. Increasing sampling frequency and 
referencing to baseline improve hemorrhage detection. 2018.
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Tree Steps to Building Great Models

Questionss

Featurize signals to uncover 
interesting information.

Validate models through 
cross validation.

Evaluate models to 
understand performance.
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