Sampling Frequency for Machine Learning to Separate Monitoring Artifact from Instability

Anthony Wertz, MS¹ ~ Marilyn Hravnak, RN, PhD, ACNP-BC, FAAN, FCCM² Artur Dubrawski, PhD, MEng¹ ~ Lujie Chen, MS¹ ~ Tiffany Pellathy, MS, ACNP-BC² Gilles Clermont, MD³ ~ Michael R. Pinsky, MD, MCCM³

Auton Lab, Robotics Institute, Carnegie Mellon University
School of Nursing, University of Pittsburgh
School of Medicine, University of Pittsburgh
Pittsburgh, PA, USA

Disclosures

- Funding: NIH R01NR013912
- No commercial conflict of interest

Motivation

We know: Vital sign (VS) data collected every 20s can be used to adjudicate alerts, classifying them as either artifacts or real instabilities.

We asked: Would sampling VS data less frequently impair ability to define real vs. artifact alerts?

Hypothesis:

Models using data sampled less frequently can be used to adjudicate alerts.

Motivation

We know: Vital sign (VS) data collected every 20s can be used to adjudicate alerts, classifying them as either artifacts or real instabilities.

We asked: Would sampling VS data less frequently impair ability to define real vs. artifact alerts?

Hypothesis:

Models using data sampled less frequently can be used to adjudicate alerts.

Why evaluate lower sampling frequencies?

- 20s resolution is often not available in deployed systems.
 - How far can we downsample without losing clinical utility?
- Higher data frequencies entail higher collection and storage costs.
- In retrospective analysis existing data repositories may have only low frequency data.

Importance of Artifact Detection

For Clinicians:

- Treat artifact vs instability differently.
- Delayed response time due to alarm fatigue.

Bonafide et al. J Hosp Med. 2015; 10(6):345-51

For Modelling Instability:

- More difficult in the presence of artifacts.
- Might end up modeling the artifact instead

Alerts versus Artifacts

Original Vital Sign Data Collected Every 20s

SpO₂ signal at various levels of downsampling

Downsampling Reduces Number of Observations

Downsampling Reduces Number of Observations

Downsampling Reduces Number of Observations

Excessive Downsampling May Leave Too Little Data

Dataset Collected from Step Down Unit Patients

- Collected continuous vital sign (VS) data streams from 200 step-down unit (SDU) patients.
 - Heart rate (HR) 3-lead ECG.
 - Respiratory rate (RR) bioimpedance signaling.
 - Pulse O₂ saturation (SpO₂) pulse oximeter.
 - Intermittent noninvasive blood pressure (BP) sphygmomanometer.
- Cardiorespiratory instability (CRI) alerts generated when VS signals are outside defined thresholds.
- Alerts labeled "real" or "artifact" by clinical investigators as previously reported.

Hravnak et al. J Clin Monit Comp 2016; 30:875-88

Alerts generated using established process. *

* Hravnak et al. J Clin Monit Comp 2016; 30:875-88

- Alerts generated using established process. *
- Mark observation "out of bounds" if it is outside specified thresholds.

* Hravnak et al. J Clin Monit Comp 2016; 30:875-88

- Alerts generated using established process. *
- Mark observation "out of bounds" if it is outside specified thresholds.
- Alert thresholds: **

HR	<	40	OR	HR	>	140
RR	<	9	OR	RR	>	36
SpO ₂	<	85				
Sys	<	80	OR	Sys	>	200
Dia	>	110		5		

* Hravnak et al. J Clin Monit Comp 2016; 30:875-88 ** Chen et al. Critical care medicine 2016; 44(7):e456-e463

- Alerts generated using established process. *
- Mark observation "out of bounds" if it is outside specified thresholds.
- Alert thresholds: **

HR	<	40	OR	HR	>	140
RR	<	9	OR	RR	>	36
SpO ₂	<	85				
Sys	<	80	OR	Sys	>	200
Dia	>	110		•		

Alert if out of bounds for at least 3 minutes.

* Hravnak et al. J Clin Monit Comp 2016; 30:875-88 ** Chen et al. Critical care medicine 2016; 44(7):e456-e463

Features Generated from Downsampled Vital Sign Data

- VS data downsampled to one observation every 20 seconds (original), 60s, 120s, 180s, and 60 minutes.
- Features generated using data in alert window (featurization).
 - Feature: Secondary variable generated from original signal.
- 15 minutes prior to the alert used as a baseline.
- Raw VS along with generated features are the inputs to the models.

Featurizing Time Series by Evaluating Data Near Event

Anna Anna Anna

- Data in the alert window used to compute statistics (e.g. mean, standard deviation, etc), trends, and other metrics.
- These features used as inputs to classification models.

• Models evaluated in a leave-one-patient-out cross validation framework.

- Models evaluated in a leave-one-patient-out cross validation framework.
- Random forest models trained (Auton Lab variant).
 - Handles missing values.
 - Builds explainable models.
 - Supports non-linear decision boundaries.
 - Successfully used in many other similar projects.

- Models evaluated in a leave-one-patient-out cross validation framework.
- Random forest models trained (Auton Lab variant).
 - Handles missing values.
 - Builds explainable models.
 - Supports non-linear decision boundaries.
 - Successfully used in many other similar projects.
- Performance compared using receiver operator characteristic (ROC) curves.

Positive class: Artifact Negative class: Real instability

- Models evaluated in a leave-one-patient-out cross validation framework.
- Random forest models trained (Auton Lab variant).
 - Handles missing values.
 - Builds explainable models.
 - Supports non-linear decision boundaries.
 - Successfully used in many other similar projects.
- Performance compared using receiver operator characteristic (ROC) curves.

Positive class: Artifact Negative class: Real instability

- Models evaluated in a leave-one-patient-out cross validation framework.
- Random forest models trained (Auton Lab variant).
 - Handles missing values.
 - Builds explainable models.
 - Supports non-linear decision boundaries.
 - Successfully used in many other similar projects.
- Performance compared using receiver operator characteristic (ROC) curves.

Positive class: Artifact Negative class: Real instability

Performance of Original 20s Model

Positive class: Artifact Negative class: Real instability

Detect 40% of Artifacts

Positive class: Artifact Negative class: Real instability

Carnegie Mellon University Auto

Detect 72% of Real Instabilities

Positive class: Artifact Negative class: Real instability

Using this threshold we correctly detect 72% of artifacts with only 1 error in 100 decisions.

Carnegie Mellon University Auto

For Uncertain Predictions Fall Back To Standard Practice

Positive class: Artifact Negative class: Real instability

For predictions in between the model is less certain. Fall back on current standard practice.

Carnegie Mellon University Auto

Nearly Identical Performance Sampling Every 60s

Positive class: Artifact Negative class: Real instability

120s Model Still Differs Insignificantly

Positive class: Artifact Negative class: Real instability

180s Model Degrades Significantly

Positive class: Artifact Negative class: Real instability

Sampling Every 60m is Detrimental to Performance

Positive class: Artifact Negative class: Real instability

Good Model Performance if Sampling Every 1 or 2 Minutes

Positive class: Artifact Negative class: Real instability

Lower Frequency Data Can Be Used to Classify Alerts

Key Finding

Vital sign data collected as infrequently as every 120 seconds can be used to adjudicate alerts without significantly sacrificing model performance.

Lower Frequency Data Can Be Used to Classify Alerts

Key Finding

Vital sign data collected as infrequently as every 120 seconds can be used to adjudicate alerts without significantly sacrificing model performance.

Impact (Why we care)

Analysis applicable to a wider range of existing systems which sample at lower rates.

Helps understand trade offs between sampling frequency and clinical utility of the models.

Lower Frequency Data Can Be Used to Classify Alerts

Key Finding

Vital sign data collected as infrequently as every 120 seconds can be used to adjudicate alerts without significantly sacrificing model performance.

Impact (Why we care)

Analysis applicable to a wider range of existing systems which sample at lower rates.

Helps understand trade offs between sampling frequency and clinical utility of the models.

Next Steps

Does sampling more frequently improve performance? Work on similar projects suggests we can derive more descriptive features when higher frequency data is available.

