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Questions

● Given observations of a patient’s vitals 
can we determine whether or not the 
patient is bleeding?

2



Copyright © 2017 Auton Lab. All rights reserved.3 October 2017

Questions

● Given observations of a patient’s vitals can we 
determine whether or not the patient is 
bleeding?

● If so,
○ How quickly?
○ How often will we get false alarms?
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detect bleeding?
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Questions

● Given observations of a patient’s vitals can we 
determine whether or not the patient is 
bleeding?

● If so,
○ How quickly?
○ How often will we get false alarms?
○ How much data do we need?
○ How does the a priori knowledge of a patient’s normal 

vitals affect our ability to detect bleeding?

● Can we design an experiment to collect 
the hemodynamic data from patients 
before and while controlled bleeding 
takes place to evaluate these 
questions?
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Questions

● Given observations of a patient’s vitals can we 
determine whether or not the patient is 
bleeding?

● If so,
○ How quickly?
○ How often will we get false alarms?
○ How much data do we need?
○ How does the a priori knowledge of a patient’s normal 

vitals affect our ability to detect bleeding?

● Can we design an experiment to collect the 
hemodynamic data from patients before and 
while controlled bleeding takes place to 
evaluate these questions?

● It turns out, we can! With pigs*
(* Ethical restrictions limit our ability to bleed humans, even in the 
name of science.)

6



Copyright © 2017 Auton Lab. All rights reserved.3 October 2017

Experimental Design

7

● Pigs are anesthetized and connected to 
various sensors for data collection…
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● Pigs are anesthetized and connected to 
various sensors for data collection, 
including:
○ Vital sensor data (arterial, central 

venous, and pulmonary artery 
pressure, ECG, plethysmograph, 
SpO2) at 250Hz and SvO2 once 
every two seconds.

Vitals
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● Pigs are anesthetized and connected to 
various sensors for data collection, 
including:
○ Vital sensor data (arterial, central 

venous, and pulmonary artery 
pressure, ECG, plethysmograph, 
SpO2) at 250Hz and SvO2 once 
every two seconds.

○ Beat-to-beat LiDCO data.

LiDCO
Vitals
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various sensors for data collection, 
including:
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● Pigs are anesthetized and connected to various 
sensors for data collection, including:

○ Vital sensor data (arterial, central venous, and 
pulmonary artery pressure, ECG, 
plethysmograph, SpO2) at 250Hz and SvO2 
once every two seconds.

○ Beat-to-beat LiDCO data.
○ Flotrac data every 20 seconds.

● They are left to rest for 30 minutes 
while baseline data is collected.

LiDCO
Flotrac

Vitals
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Experimental Design
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● Pigs are anesthetized and connected to various 
sensors for data collection, including:

○ Vital sensor data (arterial, central venous, and 
pulmonary artery pressure, ECG, 
plethysmograph, SpO2) at 250Hz and SvO2 
once every two seconds.

○ Beat-to-beat LiDCO data.
○ Flotrac data every 20 seconds.

● They are left to rest for 30 minutes while baseline 
data is collected.

● The pigs are then bled at a constant 
rate, either:

○ 5mL/min until mean arterial pressure 
drops below 40mmHg, or

○ 20mL/min until mean arterial pressure 
drops below 30mmHg.

LiDCO
Flotrac

Vitals

Bleed starts

5mL/min 20mL/min
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Computational Experimental Design
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● The data is featurized and those 
features are split into different (though 
not mutually exclusive) groups.
(Featurization and the groups will be 

discussed soon.)
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Computational Experimental Design
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● The data is featurized and those features are split 
into different (though not mutually exclusive) groups.

● Those feature sets are used to validate 
random forest models that classify a pig 
as bleeding or not in a leave - one - pig 
- out cross validation framework.

(These will also be discussed briefly.)

Training Set Testing Set
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Computational Experimental Design
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● The data is featurized and those features are split 
into different (though not mutually exclusive) groups.

● Those feature sets are used to validate random 
forest models that classify a pig as bleeding or not 
in a leave-one-pig-out cross validation framework.

● The detection results are evaluated by 
means of Receiver Operator 
Characteristic (ROC) and Activity 
Monitoring Operator Characteristic 
(AMOC) curves.

Training Set Testing Set

ROC AMOC

(These will be described in a bit more detail since
they’re necessary to understand the results.)
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Featurizations and Groups

16

● A featurization is, simply put, a 
transformation of the original 
input data.
○ E.g. given a time series of blood 

pressures the mean is computed 
every five minutes.
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● A featurization is, simply put, a 
transformation of the original input 
data.

○ E.g. given a time series of blood pressures 
the mean is computed every five minutes.

● We are especially interested in 
time series featurizations since 
these are directly impacted by 
data granularity.
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● A featurization is, simply put, a 
transformation of the original input 
data.

○ E.g. given a time series of blood pressures 
the mean is computed every five minutes.

● We are especially interested in time 
series featurizations since these are 
directly impacted by data granularity.

● To assess the impact of data 
granularity we grouped the 
featurizations in four blocks:
○ Low Frequency (LF)

Low Frequency (LF) - 7 Features
Instantaneous vital data only. Assuming a low frequency 
of data collection (around one observation every two 
minutes) useful time featurizations are not possible 
without incurring very long detection latencies.
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● A featurization is, simply put, a 
transformation of the original input 
data.

○ E.g. given a time series of blood pressures 
the mean is computed every five minutes.

● We are especially interested in time 
series featurizations since these are 
directly impacted by data granularity.

● To assess the impact of data 
granularity we grouped the 
featurizations in four blocks:

○ Low Frequency (LF)
○ Beat-to-Beat (B2B)

Beat-to-Beat (B2B) - 158 Features
Data from LiDCO device every heart beat, and data from 
Flotrac device every 20 seconds. Flotrac featurizations 
include additional features provided by Flotrac group that 
are not ordinarily available.

Low Frequency (LF) - 7 Features
Instantaneous vital data only. Assuming a low frequency 
of data collection (around one observation every two 
minutes) useful time featurizations are not possible 
without incurring very long detection latencies.
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● A featurization is, simply put, a 
transformation of the original input 
data.

○ E.g. given a time series of blood pressures 
the mean is computed every five minutes.

● We are especially interested in time 
series featurizations since these are 
directly impacted by data granularity.

● To assess the impact of data 
granularity we grouped the 
featurizations in four blocks:

○ Low Frequency (LF)
○ Beat-to-Beat (B2B)
○ Beat-to-Beat + Low Frequency 

(B2B+LF)

Beat-to-Beat + Low Frequency (B2B+LF)

Beat-to-Beat (B2B) - 158 Features
Data from LiDCO device every heart beat, and data from 
Flotrac device every 20 seconds. Flotrac featurizations 
include additional features provided by Flotrac group that 
are not ordinarily available.

Low Frequency (LF) - 7 Features
Instantaneous vital data only. Assuming a low frequency 
of data collection (around one observation every two 
minutes) useful time featurizations are not possible 
without incurring very long detection latencies.
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● A featurization is, simply put, a 
transformation of the original input 
data.

○ E.g. given a time series of blood pressures 
the mean is computed every five minutes.

● We are especially interested in time 
series featurizations since these are 
directly impacted by data granularity.

● To assess the impact of data 
granularity we grouped the 
featurizations in four blocks:

○ Low Frequency (LF)
○ Beat-to-Beat (B2B)
○ Beat-to-Beat + Low Frequency (B2B+LF)
○ High Frequency

High Frequency (HF) - 323 Features
Includes various featurizations of vital waveforms along with 
featurizations of B2B data.

Beat-to-Beat + Low Frequency (B2B+LF)

Beat-to-Beat (B2B) - 158 Features
Data from LiDCO device every heart beat, and data from 
Flotrac device every 20 seconds. Flotrac featurizations 
include additional features provided by Flotrac group that 
are not ordinarily available.

Low Frequency (LF) - 7 Features
Instantaneous vital data only. Assuming a low frequency 
of data collection (around one observation every two 
minutes) useful time featurizations are not possible 
without incurring very long detection latencies.
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● A featurization is, simply put, a 
transformation of the original input data.

○ E.g. given a time series of blood pressures 
the mean is computed every five minutes.

● We are especially interested in time series 
featurizations since these are directly 
impacted by data granularity.

● To assess the impact of data granularity 
we grouped the featurizations in four 
blocks:

○ Low Frequency (LF)
○ Beat-to-Beat (B2B)
○ Beat-to-Beat + Low Frequency (B2B+LF)
○ High Frequency

● We also compare models with and 
without baseline normalization.

High Frequency (HF) - 323 639 Features
Includes various featurizations of vital waveforms along with 
featurizations of B2B data.

Beat-to-Beat + Low Frequency (B2B+LF)

Beat-to-Beat (B2B) - 158 312 Features
Data from LiDCO device every heart beat, and data from 
Flotrac device every 20 seconds. Flotrac featurizations 
include additional features provided by Flotrac group that 
are not ordinarily available.

Low Frequency (LF) - 7 14 Features
Instantaneous vital data only. Assuming a low frequency 
of data collection (around one observation every two 
minutes) useful time featurizations are not possible 
without incurring very long detection latencies.
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Individual Baseline Normalization

24

● Patients can be very different 
when stable.

Stable before 
event.

After t=0 
something
interesting starts to
happen to the 
signals.
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Individual Baseline Normalization
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● Patients can be very different when stable.
● What threshold yields fast 

detection of event at t=0 and few 
false alarms for all patients?

Stable before 
event.

After t=0 
something
interesting starts to
happen to the 
signals.
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Individual Baseline Normalization

26

● Patients can be very different when stable.
● What threshold yields fast detection of 

event at t=0 and few false alarms for all 
patients?

● Assume some regularity in the 
baseline period:
○ Center on the mean.
○ Scale by its standard 

deviation.
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● Patients can be very different when stable.
● What threshold yields fast detection of 

event at t=0 and few false alarms for all 
patients?

● Assume some regularity in the 
baseline period:
○ Center on the mean.
○ Scale by its standard deviation.
○ Now we can find a threshold 

for this data the yields fast 
detections and few false 
positives.
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Individual Baseline Normalization
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● Patients can be very different when stable.
● What threshold yields fast detection of 

event at t=0 and few false alarms for all 
patients?

● Assume some regularity in the baseline 
period:

○ Center on the mean.
○ Scale by its standard deviation.
○ Now we can find a threshold for this data 

the yields fast detections and few false 
positives.

● For this to work we need to 
collect data when we know the 
patient is stable.
○ Not available for every patient.
○ But can be captured for patients prior 

to, for example, surgery.
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Evaluation Methodology
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● Separate models are trained  for 
combinations of
○ 5mL/min (n=14) or 20mL/min 

(n=46)
○ LF, B2B, B2B+LF, HF
○ No normalization or Individual 

baseline normalized
○ 16 different models in total.

LF
- 5mL/min
- Non-normalized

B2B
- 5mL/min
- Non-normalized

B2B+LF
- 5mL/min
- Non-normalized

HF Model
- 5mL/min
- Non-normalized

LF
- 5mL/min
- Non-normalized

B2B
- 5mL/min
- Non-normalized

B2B+LF
- 5mL/min
- Non-normalized

HF Model
- 5mL/min
- Non-normalized

LF
- 5mL/min
- Non-normalized

B2B
- 5mL/min
- Non-normalized

B2B+LF
- 5mL/min
- Non-normalized

HF Model
- 5mL/min
- Non-normalized

LF
- 5mL/min
- Normalized

B2B
- 5mL/min
- Normalized

B2B+LF
- 5mL/min
- Normalized

HF Model
- 5mL/min
- Normalized
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Evaluation Methodology

● Separate models are trained for 
combinations of

○ 5mL/min (n=14) or 20mL/min (n=46)
○ LF, B2B, B2B+LF, HF
○ No normalization or Individual baseline 

normalized
○ 16 different models in total.

● Each model is a random forest 
classifier built to distinguish 
non-bleeding instances (before 
t=0) from bleeding instances 
(after t=0).

LF
- 5mL/min
- Non-normalized

B2B
- 5mL/min
- Non-normalized

B2B+LF
- 5mL/min
- Non-normalized

HF Model
- 5mL/min
- Non-normalized

LF
- 5mL/min
- Non-normalized

B2B
- 5mL/min
- Non-normalized

B2B+LF
- 5mL/min
- Non-normalized

HF Model
- 5mL/min
- Non-normalized

LF
- 5mL/min
- Non-normalized

B2B
- 5mL/min
- Non-normalized

B2B+LF
- 5mL/min
- Non-normalized

HF Model
- 5mL/min
- Non-normalized

LF
- 5mL/min
- Normalized

B2B
- 5mL/min
- Normalized

B2B+LF
- 5mL/min
- Normalized

HF Model
- 5mL/min
- Normalized

Bleeding?

Yes

No
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● Separate models are trained for 
combinations of

○ 5mL/min (n=14) or 20mL/min (n=46)
○ LF, B2B, B2B+LF, HF
○ No normalization or Individual baseline 

normalized
○ 16 different models in total.

● Each model is a random forest 
classifier built to distinguish 
non-bleeding instances (before t=0) 
from bleeding instances (after t=0).

● Models are evaluated in a 
leave-one-pig-out cross 
validation framework.

Training Set Testing Set

LF
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- Non-normalized

B2B
- 5mL/min
- Non-normalized
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- Non-normalized

HF Model
- 5mL/min
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- Non-normalized

B2B+LF
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LF
- 5mL/min
- Non-normalized

B2B
- 5mL/min
- Non-normalized

B2B+LF
- 5mL/min
- Non-normalized

HF Model
- 5mL/min
- Non-normalized

LF
- 5mL/min
- Normalized

B2B
- 5mL/min
- Normalized

B2B+LF
- 5mL/min
- Normalized

HF Model
- 5mL/min
- Normalized

Bleeding?

Yes

No
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Evaluation Methodology

● Separate models are trained for 
combinations of

○ 5mL/min (n=14) or 20mL/min (n=46)
○ LF, B2B, B2B+LF, HF
○ No normalization or Individual baseline 

normalized
○ 16 different models in total.

● Each model is a random forest 
classifier built to distinguish 
non-bleeding instances (before t=0) 
from bleeding instances (after t=0).

● Models are evaluated in a 
leave-one-pig-out cross validation 
framework.

● Model performance is evaluated 
using ROC and AMOC curves.

Training Set Testing Set

ROC AMOC

LF
- 5mL/min
- Non-normalized

B2B
- 5mL/min
- Non-normalized

B2B+LF
- 5mL/min
- Non-normalized

HF Model
- 5mL/min
- Non-normalized

LF
- 5mL/min
- Non-normalized

B2B
- 5mL/min
- Non-normalized

B2B+LF
- 5mL/min
- Non-normalized

HF Model
- 5mL/min
- Non-normalized

LF
- 5mL/min
- Non-normalized

B2B
- 5mL/min
- Non-normalized

B2B+LF
- 5mL/min
- Non-normalized

HF Model
- 5mL/min
- Non-normalized

LF
- 5mL/min
- Normalized

B2B
- 5mL/min
- Normalized

B2B+LF
- 5mL/min
- Normalized

HF Model
- 5mL/min
- Normalized

Bleeding?

Yes

No
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Purpose of the Receiver Operating Characteristic 
(ROC) Curve

33

An ROC curve characterizes 
the performance tradeoffs 
made when tuning a 
classifier threshold.

We generally include at least 
a random choice model 
and one or more other 
models we want to 
compare.

This is the model we want to compare with 
random guessing.

This model (call it “Random”) chooses a class at 
random with uniform probability.
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Purpose of the ROC Curve
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An ROC curve characterizes the 
performance tradeoffs made when 
tuning a classifier threshold.

We generally include at least a 
random choice model and one or 
more other models we want to 
compare.

This curve characterizes the 
tradeoff between improving 
true positive rate (TPR) or 
false positive rate (FPR).

For a given FPR we can 
lookup the expected TPR.

TPR: What fraction of the positive cases did we correctly identify?

FPR: How often are we incorrectly 
alerting of a condition that is not 
really present?

(Or: How much do the nurses hate the 
new monitor?)
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Evaluating an ROC Curve

35

An ROC curve characterizes the 
performance tradeoffs made when 
tuning a classifier threshold.

We generally include at least a 
random choice model and one or 
more other models we want to 
compare.

This curve characterizes the 
tradeoff between improving true 
positive rate (TPR) or false positive 
rate (FPR).

For a given FPR we can lookup the 
expected TPR.

A better performing classifier 
will tend to move the curve 
toward the top left corner 
(i.e. more positive detections 
made with fewer false 
detections).

Best to be up here
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Low False Positive Rates on an ROC Curve

36

We are often most interested 
in the low FPR range in 
operation...

We want to look at this region.
Low FPR = Fewer false alarms.
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Low False Positive Rates on an ROC Curve
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We are often most interested in the 
low FPR range in operation…

...so we plot FPR on the log 
scale to zoom in to the 
smaller values.

Now it’s much clearer
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Low False Negative Rates on an ROC Curve

38

The other end of the ROC is also 
interesting, so we want to zoom 
there too…

This side is interesting too…
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Low False Negative Rates on an ROC Curve
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The other end of the ROC is also 
interesting, so we want to zoom 
there too…

…so we can invert the rates 
and swap the axes…

We flipped and 
rotated the ROC… 

Why?
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Low False Negative Rates on an ROC Curve

40

The other end of the ROC is also 
interesting, so we want to zoom 
there too…

…so we can invert the rates and 
swap their axes…

Note that:
● 1-FPR=TNR
● 1-TPR=FNR

TNR: How much time do we spend on patients who 
need it by avoiding too much focus on those who don’t?
FNR: How often do we miss something potentially really 
bad?
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Low False Negative Rates on an ROC Curve
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The other end of the ROC is also 
interesting, so we want to zoom 
there too…

…so we can invert the rates and 
swap their axes…

…then plot the false negative 
rate (FNR) on the log scale.
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ROC Curve

42

The other end of the ROC is also 
interesting, so we want to zoom 
there too…

…so we can invert the rates and 
swap their axes…

…then plot the false negative rate 
(FNR) on the log scale.

Now we see both 
interesting regions clearly!
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Purpose of the Activity Monitoring Operating 
Characteristic (AMOC) Curve

43

● Given a time series of predictor outputs 
generated by our model… Interesting event

starts here
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Purpose of the AMOC Curve

44

● Given a time series of predictor outputs generated 
by our model…

● ...we want to characterize the tradeoff 
between detection latency (time to 
detection) and false alarms (FPR).

You can ignore this grayed 
region. We can’t detect the 

event before it occurs.
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Computing an AMOC

45

● Given a time series of predictor outputs generated 
by our model…

● ...we want to characterize the tradeoff between 
detection latency (time to detection) and false 
alarms (FPR).

● How do we compute this?
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Computing an AMOC
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● Given a time series of predictor outputs generated 
by our model…

● ...we want to characterize the tradeoff between 
detection latency (time to detection) and false 
alarms (FPR).

● How do we compute this?
○ Call a “detection” an output greater 

or equal to 0.2.
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Computing an AMOC

47

● Given a time series of predictor outputs generated 
by our model…

● ...we want to characterize the tradeoff between 
detection latency (time to detection) and false 
alarms (FPR).

● How do we compute this?
○ Call a “detection” an output greater or equal 

to 0.2. Assigning this threshold gives 
us
■ A time to detection (the first true 

positive).
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Computing an AMOC
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● Given a time series of predictor outputs generated 
by our model…

● ...we want to characterize the tradeoff between 
detection latency (time to detection) and false 
alarms (FPR).

● How do we compute this?
○ Call a “detection” an output greater or equal 

to 0.2. Assigning this threshold gives us
■ A time to detection (the first true 

positive).
■ A number of false positives 

(thus, FPR).
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Computing an AMOC
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● Given a time series of predictor outputs generated 
by our model…

● ...we want to characterize the tradeoff between 
detection latency (time to detection) and false 
alarms (FPR).

● How do we compute this?
○ Call a “detection” an output greater or equal 

to 0.2. Assigning this threshold gives us
■ A time to detection (the first true 

positive).
■ A number of false positives (thus, 

FPR).
○ Do this again for another threshold, 

0.3, and now there are two points on 
the AMOC.

Fewer false alarms

More latency



Copyright © 2017 Auton Lab. All rights reserved.3 October 2017

Computing an AMOC
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● Given a time series of predictor outputs generated 
by our model…

● ...we want to characterize the tradeoff between 
detection latency (time to detection) and false 
alarms (FPR).

● How do we compute this?
○ Call a “detection” an output greater or equal 

to 0.2. Assigning this threshold gives us
■ A time to detection (the first true 

positive).
■ A number of false positives (thus, 

FPR).
○ Do this again for another threshold, 0.3, and 

now there are two points on the AMOC.
○ Keep doing this for all thresholds for 

the complete curve.
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Low False Positive Rates on an AMOC

51

● Given a time series of predictor outputs generated 
by our model…

● ...we want to characterize the tradeoff between 
detection latency (time to detection) and false 
alarms (FPR).

● How do we compute this?
○ Call a “detection” an output greater or equal 

to 0.2. Assigning this threshold gives us
■ A time to detection (the first true 

positive).
■ A number of false positives (thus, 

FPR).
○ Do this again for another threshold, 0.3, and 

now there are two points on the AMOC.
○ Keep doing this for all thresholds for the 

complete curve.
● Lower FPR values are generally more 

operationally useful…
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Low False Positive Rates on an AMOC
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● Given a time series of predictor outputs generated 
by our model…

● ...we want to characterize the tradeoff between 
detection latency (time to detection) and false 
alarms (FPR).

● How do we compute this?
○ Call a “detection” an output greater or equal 

to 0.2. Assigning this threshold gives us
■ A time to detection (the first true 

positive).
■ A number of false positives (thus, 

FPR).
○ Do this again for another threshold, 0.3, and 

now there are two points on the AMOC.
○ Keep doing this for all thresholds for the 

complete curve.
● Lower FPR values are generally more operationally 

useful… so we put FPR on the log scale to 
zoom in to this region.
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Missing Detections on AMOCs
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● When computing AMOCs using multiple 
time series, not all series will have a 
detection for every output threshold.
○ If an event in a time series is not 

detected (i.e. zero true positives) we 
call that a “miss”.

○ As will be shown on subsequent 
slides, relaxing the minimum fraction 
of time series that must be detected 
can greatly reduce detection latency 
at the cost of missing some 
detections.
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Aggregating AMOC Curves
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● When computing AMOCs using multiple time series, 
not all series will have a detection for every output 
threshold.

○ If an event in a time series is not detected (i.e. 
zero true positives) we call that a “miss”.

○ As will be shown on subsequent slides, 
relaxing the minimum fraction of time series 
that must be detected can greatly reduce 
detection latency at the cost of missing some 
detections.

● The AMOCs on the next slides show the 
“maximum” time to detection for a given 
threshold.
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Understand the Legend
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● We’ll start with classifications results for the 5mL/min cohort. But first, the 
legend:
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Performance Improves with Increasing Granularity
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ROC curves for 5mL/min bleed group

● These results are for the 5mL/min cohort.
● In general we see that greater data density yields 

better classification performance.

Better
Higher density

Lower density

Clear how much better here! How much better at FPR of 10-3?

?
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Performance Improves with Normalization
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ROC curves for 5mL/min bleed group

● These results are for the 5mL/min cohort.
● In general we see that greater data density yields better 

classification performance.
● Knowledge of individual baselines vastly improves 

performance.

Better

Normalized

Non-normalized
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Performance is Similar Between Bleed Groups
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ROC curves for 5mL/min and 20mL/min bleed groups

This is true in the
20mL/min group as well.

5m
L/m

in
20m

L/m
in
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Early Performance is Much Better with Higher 
Granularity
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ROC curves for 5mL/min bleed group 0-5 minutes (top) vs 10-15 minutes (bottom) into the bleed

0-5 m
in

10-15 m
in
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Moving from the ROC to the AMOC
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● The ROC shows of the trade-off between correct and incorrect 
classifications.

● What about the timeliness of a detection?
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Evaluating Time to Detection (Latency)
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AMOC curve for 5mL/min bleed group● These results are for the 5mL/min cohort.
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Evaluating Time to Detection (Latency)
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AMOC curve for 5mL/min bleed group● These results are for the 5mL/min cohort.
● The performance is better when we move to 

the bottom left of the plot (lower FPR, lower 
latency).

Better
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Evaluating Time to Detection (Latency)
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AMOC curve for 5mL/min bleed group● These results are for the 5mL/min cohort.
● The performance is better when we move to the 

bottom left of the plot (lower FPR, lower latency).
● This AMOC enforces the constraint that a 

detection is made on all pigs…
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Faster Detections when Minimum Detected Fraction 
is Lower
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AMOC curves for 5mL/min bleed group

● These results are for the 5mL/min cohort.
● The performance is better when we move to the bottom left of the plot (lower FPR, 

lower latency).
● This AMOC enforces the constraint that a detection is made on 

all pigs… but we can loosen that constraint for faster 
detections at the expense of some missed detections.

Faster detection Slower detection

All bleeds detectedAt least 90% of bleeds detected

≥ 80% ≥ 90% 100%
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Faster Detections and Fewer False Alarms with 
Higher Granularity
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AMOC curves for 5mL/min bleed group

● These results are for the 5mL/min cohort.
● The performance is better when we move to the bottom left of the plot (lower FPR, 

lower latency).
● This AMOC enforces the constraint that a detection is made on all pigs… but we can 

loosen that constraint for speedier detections at the expense of some missed 
detections.

● We see that greater data density generally yields 
faster detections for the same FPR on normalized 
models.

Better

Lower density

Higher Density

≥ 80% ≥ 90% 100%
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Faster Detections and Fewer False Alarms with 
Normalization

67

AMOC curves for 5mL/min bleed group

● These results are for the 5mL/min cohort.
● The performance is better when we move to the bottom left of the plot (lower FPR, 

lower latency).
● This AMOC enforces the constraint that a detection is made on all pigs… but we can 

loosen that constraint for speedier detections at the expense of some missed 
detections.

● We see that greater data density generally yields faster detections for the same 
FPR on normalized models.

● Knowledge of individual baselines allows faster 
detections for the same FPR.

Better

Non-normalized

Normalized

≥ 80% ≥ 90% 100%
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Detection Performance by Time Latency

68

● Lower granularity models 
detect more slowly for the 
slower bleeding pigs.

≥ 90%
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Detection Performance by Time Latency
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● Lower granularity models detect 
more slowly for the slower bleeding 
pigs.

● But the highest granularity 
model detects them with the 
same latency.

≥ 90%
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Detection Performance by Volume Lost
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● Lower granularity models detect 
more slowly for the slower bleeding 
pigs.

● But the highest granularity model 
detects them with the same 
latency.

● Comparing by volume of blood 
loss reveals earlier detections 
in terms of volume of blood lost 
for the slower bleeding cohort.

≥ 90%
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Detection Performance by Volume Lost

71

● Lower granularity models detect 
more slowly for the slower bleeding 
pigs.

● But the highest granularity model 
detects them with the same 
latency.

● Comparing by volume of blood loss 
reveals earlier detections in terms 
of volume of blood lost for the 
slower bleeding cohort.

● This is especially true in the 
case of the high frequency 
models.

≥ 90%
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Detection Performance by Time and Volume Lost
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● Lower granularity models detect 
more slowly for the slower bleeding 
pigs.

● But the highest granularity model 
detects them with the same 
latency.

● Comparing by volume of blood loss 
reveals earlier detections in terms 
of volume of blood lost for the 
slower bleeding cohort.

● This is especially true in the case 
of the high frequency models.

● Presence of a detectable 
response appears more 
dependent on some time 
delay from the onset of bleed 
rather than
○ volume of blood lost or
○ severity (5 vs 20 mL/min) 

of the bleeding.

≥ 90%
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Detection Performance by Time and Volume Lost

73

● Lower granularity models detect 
more slowly for the slower bleeding 
pigs.

● But the highest granularity model 
detects them with the same 
latency.

● Comparing by volume of blood loss 
reveals earlier detections in terms 
of volume of blood lost for the 
slower bleeding cohort.

● This is especially true in the case 
of the high frequency models.

● Presence of a detectable response 
appears more dependent on some 
time delay from the onset of bleed 
rather than

○ volume of blood lost or
○ severity (5 vs 20 mL/min) of 

the bleeding.
○ But seeing this requires 

denser data.

≥ 90%
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Discussion

74

Clinical Implications:

● Our results show that we can detect bleeding quickly at a low rate of false alarms,  
in particular when baseline data is available. (e.g. for patients prior to surgery, 
soldiers, astronauts…)

● Performance is improved when more granular data can be utilized, suggesting 
bedside monitoring equipment capable of capturing and processing higher density 
data can be beneficial.

What’s next?

● Can models quantify the amount of blood lost?
● Can we eliminate the necessity of individualized baselines?
● How well can we do with non-invasive monitoring?
● Can we differentiate from other disease states? (e.g. anaphylactic shock, septic 

shock…)
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The Main Take-Aways

75

Machine learning 
enables building 

powerful 
multi-variate 
models for 

bleeding detection.

Higher granularity 
data improves 

detection 
performance.

Knowledge of a 
personal baseline 
improves detection 

performance.


